Minggu, 27 November 2011

Sejarah kalkulus

Sejarah kalkulus


Sir Isaac Newton adalah salah seorang penemu dan kontributor kalkulus yang terkenal.


Sejarah perkembangan kalkulus bisa ditilik pada beberapa periode zaman, yaitu zaman kuno, zaman pertengahan, dan zaman modern. Pada periode zaman kuno, beberapa pemikiran tentang kalkulus integral telah muncul, tetapi tidak dikembangkan dengan baik dan sistematis. Perhitungan volume dan luas yang merupakan fungsi utama dari kalkulus integral bisa ditelusuri kembali pada Papirus Moskwa Mesir (c. 1800 SM). Pada papirus tersebut, orang Mesir telah mampu menghitung volume piramida terpancung.[1] Archimedes mengembangkan pemikiran ini lebih jauh dan menciptakan heuristik yang menyerupai kalkulus integral.[2]
Pada zaman pertengahan, matematikawan India, Aryabhata, menggunakan konsep kecil tak terhingga pada tahun 499 dan mengekspresikan masalah astronomi dalam bentuk persamaan diferensial dasar.[3] Persamaan ini kemudian mengantar Bhāskara II pada abad ke-12 untuk mengembangkan bentuk awal turunan yang mewakili perubahan yang sangat kecil takterhingga dan menjelaskan bentuk awal dari "Teorema Rolle".[4] Sekitar tahun 1000, matematikawan Irak Ibn al-Haytham (Alhazen) menjadi orang pertama yang menurunkan rumus perhitungan hasil jumlah pangkat empat, dan dengan menggunakan induksi matematika, dia mengembangkan suatu metode untuk menurunkan rumus umum dari hasil pangkat integral yang sangat penting terhadap perkembangan kalkulus integral.[5] Pada abad ke-12, seorang Persia Sharaf al-Din al-Tusi menemukan turunan dari fungsi kubik, sebuah hasil yang penting dalam kalkulus diferensial. [6] Pada abad ke-14, Madhava, bersama dengan matematikawan-astronom dari mazhab astronomi dan matematika Kerala, menjelaskan kasus khusus dari deret Taylor[7], yang dituliskan dalam teks Yuktibhasa.[8][9][10]
Pada zaman modern, penemuan independen terjadi pada awal abad ke-17 di Jepang oleh matematikawan seperti Seki Kowa. Di Eropa, beberapa matematikawan seperti John Wallis dan Isaac Barrow memberikan terobosan dalam kalkulus. James Gregory membuktikan sebuah kasus khusus dari teorema dasar kalkulus pada tahun 1668.

Gottfried Wilhelm Leibniz pada awalnya dituduh menjiplak dari hasil kerja Sir Isaac Newton yang tidak dipublikasikan, namun sekarang dianggap sebagai kontributor kalkulus yang hasil kerjanya dilakukan secara terpisah.
Leibniz dan Newton mendorong pemikiran-pemikiran ini bersama sebagai sebuah kesatuan dan kedua orang ilmuwan tersebut dianggap sebagai penemu kalkulus secara terpisah dalam waktu yang hampir bersamaan. Newton mengaplikasikan kalkulus secara umum ke bidang fisika sementara Leibniz mengembangkan notasi-notasi kalkulus yang banyak digunakan sekarang.
Ketika Newton dan Leibniz mempublikasikan hasil mereka untuk pertama kali, timbul kontroversi di antara matematikawan tentang mana yang lebih pantas untuk menerima penghargaan terhadap kerja mereka. Newton menurunkan hasil kerjanya terlebih dahulu, tetapi Leibniz yang pertama kali mempublikasikannya. Newton menuduh Leibniz mencuri pemikirannya dari catatan-catatan yang tidak dipublikasikan, yang sering dipinjamkan Newton kepada beberapa anggota dari Royal Society.
Pemeriksaan secara terperinci menunjukkan bahwa keduanya bekerja secara terpisah, dengan Leibniz memulai dari integral dan Newton dari turunan. Sekarang, baik Newton dan Leibniz diberikan penghargaan dalam mengembangkan kalkulus secara terpisah. Adalah Leibniz yang memberikan nama kepada ilmu cabang matematika ini sebagai kalkulus, sedangkan Newton menamakannya "The science of fluxions".
Sejak itu, banyak matematikawan yang memberikan kontribusi terhadap pengembangan lebih lanjut dari kalkulus.
Kalkulus menjadi topik yang sangat umum di SMA dan universitas zaman modern. Matematikawan seluruh dunia terus memberikan kontribusi terhadap perkembangan kalkulus.[11]

Pengaruh penting

Walau beberapa konsep kalkulus telah dikembangkan terlebih dahulu di Mesir, Yunani, Tiongkok, India, Iraq, Persia, dan Jepang, penggunaaan kalkulus modern dimulai di Eropa pada abad ke-17 sewaktu Isaac Newton dan Gottfried Wilhelm Leibniz mengembangkan prinsip dasar kalkulus. Hasil kerja mereka kemudian memberikan pengaruh yang kuat terhadap perkembangan fisika.
Aplikasi kalkulus diferensial meliputi perhitungan kecepatan dan percepatan, kemiringan suatu kurva, dan optimalisasi. Aplikasi dari kalkulus integral meliputi perhitungan luas, volume, panjang busur, pusat massa, kerja, dan tekanan. Aplikasi lebih jauh meliputi deret pangkat dan deret Fourier.
Kalkulus juga digunakan untuk mendapatkan pemahaman yang lebih rinci mengenai ruang, waktu, dan gerak. Selama berabad-abad, para matematikawan dan filsuf berusaha memecahkan paradoks yang meliputi pembagian bilangan dengan nol ataupun jumlah dari deret takterhingga. Seorang filsuf Yunani kuno memberikan beberapa contoh terkenal seperti paradoks Zeno. Kalkulus memberikan solusi, terutama di bidang limit dan deret takterhingga, yang kemudian berhasil memecahkan paradoks tersebut.

Prinsip-prinsip dasar

Limit dan kecil tak terhingga


Definisi limit: kita katakan bahwa limit f(x) ketika x mendekati titik p adalah L apabila untuk setiap bilangan ε > 0 apapun, terdapat bilangan δ > 0, sedemikian rupanya:  0 < |x-p| <\delta \Rightarrow |f(x)-L|<\epsilon
Kalkulus pada umumnya dikembangkan dengan memanipulasi sejumlah kuantitas yang sangat kecil. Objek ini, yang dapat diperlakukan sebagai angka, adalah sangat kecil. Sebuah bilangan dx yang kecilnya tak terhingga dapat lebih besar daripada 0, namun lebih kecil daripada bilangan apapun pada deret 1, ½, ⅓, ... dan bilangan real positif apapun. Setiap perkalian dengan kecil tak terhingga (infinitesimal) tetaplah kecil tak terhingga, dengan kata lain kecil tak terhingga tidak memenuhi properti Archimedes. Dari sudut pandang ini, kalkulus adalah sekumpulan teknik untuk memanipulasi kecil tak terhingga.
Pada abad ke-19, konsep kecil tak terhingga ini ditinggalkan karena tidak cukup cermat, sebaliknya ia digantikan oleh konsep limit. Limit menjelaskan nilai suatu fungsi pada nilai input tertentu dengan hasil dari nilai input terdekat. Dari sudut pandang ini, kalkulus adalah sekumpulan teknik memanipulasi limit-limit tertentu. Secara cermat, definisi limit suatu fungsi adalah:
Diberikan fungsi f(x) yang terdefinisikan pada interval di sekitar p, terkecuali mungkin pada p itu sendiri. Kita mengatakan bahwa limit f(x) ketika x mendekati p adalah L, dan menuliskan:
\lim_{x \to p}{f(x)}=L
jika, untuk setiap bilangan ε > 0, terdapat bilangan δ > 0 yang berkoresponden dengannya sedemikian rupanya untuk setiap x:
 0 < |x-p| <\delta \Rightarrow |f(x)-L|<\epsilon \,

Turunan


Grafik fungsi turunan.
Turunan dari suatu fungsi mewakili perubahan yang sangat kecil dari fungsi tersebut terhadap variabelnya. Proses menemukan turunan dari suatu fungsi disebut sebagai pendiferensialan ataupun diferensiasi.
Secara matematis, turunan fungsi ƒ(x) terhadap variabel x adalah ƒ′ yang nilainya pada titik x adalah:
f'(x)=\lim_{h \to 0}{f(x+h) - f(x)\over{h}} ,
dengan syarat limit tersebut eksis. Jika ƒ′ eksis pada titik x tertentu, kita katakan bahwa ƒ terdiferensialkan (memiliki turunan) pada x, dan jika ƒ′ eksis di setiap titik pada domain ƒ, kita sebut ƒ terdiferensialkan.
Apabila z = x + h, h = x - z, dan h mendekati 0 jika dan hanya jika z mendekati x, maka definisi turunan di atas dapat pula kita tulis sebagai:
f'(x)=\lim_{z \to x}{f(z) - f(x)\over{z-x}}


Garis singgung pada (x, f(x)). Turunan f'(x) sebuah kurva pada sebuah titik adalah kemiringan dari garis singgung yang menyinggung kurva pada titik tersebut.
Perhatikan bahwa ekspresi {f(x+h) - f(x)\over{h}} pada definisi turunan di atas merupakan gradien dari garis sekan yang melewati titik (x,ƒ(x)) dan (x+h,ƒ(x)) pada kurva ƒ(x). Apabila kita mengambil limit h mendekati 0, maka kita akan mendapatkan kemiringan dari garis singgung yang menyinggung kurva ƒ(x) pada titik x. Hal ini berarti pula garis singgung suatu kurva merupakan limit dari garis sekan, demikian pulanya turunan dari suatu fungsi ƒ(x) merupakan gradien dari fungsi tersebut.
Sebagai contoh, untuk menemukan gradien dari fungsi f(x) = x2 pada titik (3,9):
\begin{align}
f'(3)&=\lim_{h \to 0}{(3+h)^2 - 9\over{h}} \\
&=\lim_{h \to 0}{9 + 6h + h^2 - 9\over{h}}  \\
&=\lim_{h \to 0}{6h + h^2\over{h}} \\
&=\lim_{h \to 0} (6 + h) \\
&= 6 
\end{align}

Sabtu, 26 November 2011

khasiat teh rosella

 

khasiat teh rosella

Bunga rosela merah yang telah clikeringkan dan dise­duh menjadi secangkir teh yang berci­tara rasa sedikitasam ini mampu meng­atasi batuk, asam urat, kolesterol, hipertensi, radikal bebas, dan penye­gar (tonik). Selain itu, berdasarkan penelitian ilmiah yang dilakukan ilmu­wan Sudan, rosela merah juga berkha­siat untuk menurunkan tekanan darah (hipotensif), antikejang saluran perna­pasan, anticacing (antelmintik), dan antibakteri."Alhamdulillah, setelah tiga bulan minum teh rosela merah, gula darah saya turun dari 320 menjadi 101 dan tekanan darah saya juga memba­ik," ujar lili. Kini ia ter­bebas dari obat­obatan kimia yang telah ia konsumsi selama lima belas tahun dan kesehat­annya pun mem­baik Secangkir Teh Rosella Merah: menyehatkan Kesaksian lain datang dari Lina (29 tahun) yang awalnya tersiksa dengan degup jan­tungnya yang tidak normal sehingga membu­atnya sulit tidur. ''''Meskipun sudah merasa sehat, saya tetap minum teh rosela merah agar tetap bugar dan menjaga berat badan," ujar Lina yang sebelumnya berbobot 70 kg dengan tinggi 154 cm. Hal ini bukan isapan jempol semata karena rosella merah mengandung berbagai senyawa berkhasiat, seperti antioksidan, asam esensial, beta karoten, potasium, zat besi, dan berbagai jenis vitamin. mendapatkan secangkir teh rosela merah hangat dengan warna yang cantik. Saat ini, sejumlah produsen herbal mulai memproduksi rosela merah dalam bentuk yang mudah dikonsum­si, yaitu teh celup (teabag) dan kapsul. Selain itu, rosela merah juga hadir dalam bentuk selai, manisan, dan sirup. Indonesia masih bergantung pada negara Timur Tengah untuk menda­patkan bibit rosela merah, seperti Sudan dan Arab Saudi.
Diterbitkan di: 09 Maret, 2008   

Sumber: http://id.shvoong.com/medicine-and-health/alternative-medicine/1781069-khasiat-teh-rosella/#ixzz1etGjBJ6D

Al Khawarizmi Bapak Matematika (Aljabar)

Al Khawarizmi Bapak Matematika (Aljabar)



Patung perunggu Al Khawarizmi di Uzbekistan.


Nama lengkapnya, Abu Abdullah Muhammad Ibn Musa Al Khawarizmi, lahir di Khawarizm (Kheva, sekarang Usbekistan) sekitar 780 M. Menjelang dewasa ia pindah ke Bagdad-Irak untuk menuntut ilmu pengetahuan. Pada masa itu kota Bagdad – Irak berada dalam masa cemerlang sebagai pusat ilmu penetahuan. DI mata sejarah, Baghdad adalah kota yang luar biasa berharga bagi umat manusia. Sebab, tak hanya molek dan menyimpan kekayaan peradaban masa silam, Baghdad juga menjadi saksi tingginya kebudayaan dan semangat keilmuan yang membawa umat manusia ke era kemajuan sains dan filsafat. Puncaknya, boleh dikata, terjadi pada saat khalifah kelima dinasti ini, Khalifah Harun ar-Rasyid berkuasa, .seorang khalifah Abbasiyah yang terkenal.
Tak berapa lama setelah naik tahta, Harun ar-Rasyid mendirikan Bait al-Hikmah. Bait al-Hikmah ini merupakan lembaga yang berfungsi sebagai pusat pendidikan tinggi. Dalam kurun dua abad, Bait al-Hikmah ternyata berhasil melahirkan banyak pemikir dan intelektual Islam. Di antaranya, nama-nama ilmuwan seperti Al-Khwarizmi dan Al-Battani.
Dengan meninggalkan karya-karya besarnya sebagai ilmuwan terkemuka dan terbesar pada zamannya, Al-Khwarizmi meninggal pada tahun 262 H/846 M di Bagdad.
Al Khawarizmi adalah penulis kitab aljabar (matematika) pertama di muka bumi.
Al Khawarizmi adalah seorang ilmuan jenius pada masa keemasan Baghdad yang sangat besar sumbangsihnya terhadap ilmu aljabar dan aritmetika. Karyanya, Kitab Aljabr Wal Muqabalah (Pengutuhan Kembali dan Pembandingan) merupakan pertama kalinya dalam sejarah dimana istilah aljabar muncul dalam kontesk disiplin ilmu. Nama aljabar diambil dari bukunya yang terkenal tersebut. Karangan itu sangat populer di negara-negara barat dan diterjemahkan dari bahasa Arab ke bahasa Latin dan Italia. Bahasan yang banyak dinukil oleh ilmuwan barat dari karangan Al-Khawarizmi adalah tentang persamaan kuadrat.
Sumbangan Al-Khwarizmi dalam ilmu ukur sudut juga luar biasa. Tabel ilmu ukur sudutnya yang berhubungan dengan fungsi sinus dan garis singgung tangen telah membantu para ahli Eropa memahami lebih jauh tentang ilmu ini. Ia mengembangkan tabel rincian trigonometri yang memuat fungsi sinus, kosinus dan kotangen serta konsep diferensiasi.
Selain mengarang Al-Maqala fi Hisab-al Jabr wa-al-Muqabilah, ia juga diketahui telah menulis beberapa buku dan banyak diterjemahkan kedalam bahasa latin pada awal abad ke-12, oleh dua orang penerjemah terkemuka yaitu Adelard Bath dan Gerard Cremona. Risalah-risalah aritmetikanya, satu diantaranya berjudul Kitab al-Jam’a wal-Tafreeq bil Hisab al-Hindi (Menambah dan Mengurangi dalam Matematika Hindu), hanya dikenal dari translasi berbahasa latin. Buku-buku itu terus dipakai hingga abad ke-16 sebagai buku pegangan dasar oleh universitas-universitas di Eropa.
Kedua karya tersebut banyak menguraikan tentang persamaan linier dan kuadrat; penghitungan integrasi dan persamaan dengan 800 contoh yang berbeda; tanda-tanda negatif yang sebelumnya belum dikenal oleh bangsa Arab. Dalam Al-Jama’ wa at-Tafriq, Al-Khwarizmi menjelaskan tentang seluk-beluk kegunaan angka-angka, termasuk angka nol dalam kehidupan sehari-hari. Karya tersebut juga diterjemahkan ke dalam bahasa Latin
Al Khawarizmi bapak algoritma.
Dalam bidang aritmetika, Al-Khawarizmi menulis kitab Al-Jam wal Tafriq bi Hisab al-Hid (Book of Addition Substraction by the Methode Calculation). Edisi asli berbahasa Arab telah hilang, tapi versi lainnya ditemukan pada tahun 1857 di perpustakaan Universitas Cambridge. Karya Al-Khawarizmi itu dikenal sebagai buku pelajaran pertama yang ditulis dengan menggunakan sistem bilangan desimal. Meskipun masih bersifat dasar, ini merupakan titik awal penyeimbangan ilmu matematika dan sains. Terminologi algoritma, mungkin bukan sesuatu yang asing bagi kita Di Eropa, karyanya diterjemahkan ke dalam bahasa Latin sebagai Alchwarizmi, Alkarismi, Algorithmi, Algorismi. Di literatur barat beliau lebih terkenal dengan sebutan Algorizm. Panggilan inilah yang kemudian dipakai untuk menyebut konsep algoritma yang ditemukannya. Para pelajar Eropa mengaitkan Al-Khawarizmi ini dan New Arithmetic yang pada akhirnya menjadi basis notasi angka, dimana notasi penulisan angka Arab dikenal dengan Algorism atau Algoritma. Dalam sejarah ilmu pengetahuan, kelak Al-Khwarizmi dikenal sebagai pengembang aritmetika dan geometri. Perhitungan logaritma yang dewasa ini digunakan secara luas di bidang komputer (sains & engineering), diketahui berasal dari hasil pemikirannya.
Al Khawarizmi adalah orang pertama memperkenalkan angka 0 (nol) dalam dunia ilmu pengetahuan (bilangan/hitungan).
Meski ia bukan penemu angka 0 (nol), namun Al-Khawarizmi orang pertama di dunia yang memperkenalkan angka nol sebagai suatu bilangan dalam ranah ilmu pengetahuan.
‘Kosong’, atau 0, bukan sebarang angka, penemuannya merevolusikan pemikiran matematik dan sains moden. Angka nol ini sudah digunakan di dunia Arab-Islam pada kurun kesembilan. Angka 0 baru diperkenalkan di Eropah pada awal abad ke-13, dibawa oleh pemikir Itali, Fibonacci, dalam tahun 1202 melalui karya popularnya Liber Abaci. Sifar adalah kata arab untuk angka 0. Perkataan sifar ini juga membentuk perkataan cipher dalam bahasa Inggeris yang membawa masud “tiada apa-apa”, “simbol”, “kod” atau “mesej rahsia”.
Sebelum dipopularkan al-Khwarizmi, Ifrah menyebut, beberapa nombor kosong di tulisan-tulisan pada batu ditemui antaranya prasasti tembaga Sankheda di India pada 594, Trapaeng Prei di Kemboja (683), Kedukan Bukit, Sumatera (683), Kota Kapor, Sumatera (686), Dinaya, Jawa (793), Po Nagar, Vietnam (813) dan Bakul, Vietnam (829).
Di wilayah Indonesia angka 0 ditemukan pada tiga perkataan pembilangan duaratus (200), sariwu tluratus sapulu dua (1312) dan dualaksa (20,000) pada prasasti Kedukan Bukit pada tahun 683, perkataan sapuluh dua (12) dan dua laksa (20,000) di prasasti Telaga Batu (Sumatera) pada 683.
Al Khawarizmi seorang ahli astronomi & geografi.
Al-Khwarizmi juga dikenal sebagai ahli astronomi yang mendasarkan diri pada pemikiran Ptolemaeus, astronom Iskandariyah yang hidup di abad ke-2 (100-178 M).
Sumbangan pemikiran penting Al-Khwarizmi di bidang astronomi adalah pedoman penentuan garis lintang dan garis bujur untuk membuat peta, yang lebih akurat dibandingkan dengan temuan Ptolemaeus. Pada tahun wafatnya Al-Khwarizmi (850 M), lahirlah Al-Battani –bernama lengkap Abu Abdallah Mohammad ibn Jabir ibn Sinan al-Raqqi al-Harrani al-Sabi al-Battani.
Di bawah Khalifah Ma’mun, sebuah tim astronom yang dipimpinnya berhasil menentukan ukuran dan bentuk bundaran bumi. Penelitian ini dilakukan di Sanjar dan Palmyra. Hasilnya hanya selisih 2,877 kaki dari ukuran garis tengah bumi yang sebenarnya. Sebuah perhitungan luar biasa yang dapat dilakukan pada saat itu. Al-Khwarizmi juga menyusun buku tentang penghitungan waktu berdasarkan bayang-bayang matahari.
Buah pikir Khwarizmi di bidang geografi juga sangat mengagumkan. Dia tidak hanya merevisi pandangan Ptolemeus dalam geografi tapi malah memperbaiki beberapa bagiannya. Tujuh puluh orang geografer pernah bekerja dibawah kepemimpina Al khwarizmi ketika membuat peta dunia pertama di tahun 830. Ia dikisahkan pernah pula menjalin kerjasama dengan Khalifah Mamun Al-Rashid ketika menjalankan proyek untuk mengetahui volume dan lingkar bumi.
Buku geografinya berjudul Kitab Surat-al-Ard (bentuk rupa bumi) yang memuat peta-peta dunia dan menjadi dasar geografi Arab. Karya tersebut masih tersimpan di Strassberg, Jerman. Bukunya ini telah diterjemahkan kedalam bahasa Inggris.
Eropa Berhutang Kepada Islam.
Sebelum mengenal peradaban Islam, keadaan negeri-negeri Barat sungguh memprihatin-kan. Dalam bu-ku Sejarah Umum karya Lavis dan Rambon dije-laskan bahwa Inggris Anglo-Saxon pada abad ke-7 M hingga sesu-dah abad ke-10 M merupakan negeri yang tandus, terisolir, kumuh, dan liar. Tempat kediaman dan keamanan manusia tidak lebih baik daripada hewan. Eropa masih penuh dengan hutan-hutan belantara. Mereka tidak mengenal kebersihan. Kotoran hewan dan sampah dapur dibuang di depan rumah sehingga menyebarkan bau-bau busuk. Dan kota terbesar di Eropa penduduk-nya tidak lebih dari 25.000 orang.
Kondisi di atas jauh banget bedanya ama keadaan kota-kota besar Islam pada waktu yang sama. Seperti di kota Cordoba, ibukota Andalus di Spanyol. Cordoba dikelilingi taman-taman hijau. Penduduknya lebih dari satu juta jiwa. Terdapat 900 tempat pemandian, 283.000 rumah penduduk, 80.000 gedung-gedung, 600 masjid, 50 rumah sakit, dan 80 sekolah. Semua penduduknya terpelajar. Karena orang-orang miskin pun menuntut ilmu secara cuma-cuma.
Selain ketinggian peradaban Islam, para ilmuwan Muslim juga punya peran besar dalam memajukan ilmu pengetahuan dunia.
Semua tinggal sejarah?.
Islam punya sejarah hebat . Akankah islam akan berjaya lagi?, apakah hadis nabi di bawah ini akan terbukti terulang kembali?
� Islam pasti akan mencapai wilayah yang diliputi siang dan malam. Allah tidak akan membiarkan rumah yang megah maupun yang sederhana, kecuali akan memasukkan agama ini ke dalamnya, dengan memuliakan orang yang mulia dan dengan menghinakan orang yang hina. Mulia karena Allah akan memuliakannya dengan Islam; hina karena Allah akan menghinakannya akibat kekafirannya.� (HR. Ahmad dalam Musnad-nya, jld. IV/103).


sumber: www.google.com

7 Fakta Seputar Agnes Monica

  7 Fakta Kehidupan Seputar Agnes Monica

Agnes Monica artis cantik dan juga sangat berprestasi dalam kancah hiburan bangsa ini. Kehidupan pribadi Agnes jarang terendus media. Ini merupakan prestasi tersendiri juga bagi dara keturunan Tionghoa ini. Jarang ada gosip miring berhembus tentang dirinya kecuali kedekatannya dengan sejumlah pria seperti Afgan, Bams SamsonS dan Rezky Aditya. Selebihnya, Agnes tergolong selebriti yang ‘bersih’.   

agnes monica|Data 7 Fakta Kehidupan Seputar  Agnes Monica

Agnes Monica Muljoto adalah salah satu selebriti multi-talenta di Indonesia yang mengawali karir sebagai penyanyi dan presenter cilik sebelum akhirnya merambah dunia seni peran lewat sinetron ‘Pernikahan Dini’ pada tahun 2001 silam. Berikut adalah biodata lengkap Agnes Monica:

Nama : Agnes Monica Muljoto
Nama Beken : Agnes Monica
Tempat / Tanggal Lahir : 1 Juli 1986
Orang Tua : Jenny Siswono (Ibu) & Ricky Suprapto (Ayah)
Agama : Kristen
Pekerjaan : Penyanyi, Pemain Sinetron
Hobby : Ice Skating dan Badminton
Tinggi / Berat : 165 cm / 49 kg.

Dan dibawah ini adalah 7 fakta-fakta unik seputar kehidupan Agnes Monica.

1. Selain urusan musik, hobi Agnes lainnya adalah membaca, menari, akting, menulis serta berbagai olahraga seperti ice skating, piano, dan badminton. 

2. Menurut Bens Leo, Agnes adalah satu-satunya penyanyi wanita yang sudah pantas menjadi seorang diva dan penerus Anggun C Sasmi. Agnes dianggap mampu menjual CDnya sebanyak 1 juta kopi dalam waktu singkat, berkolaborasi dengan musisi dunia, sampai mengonsep video klipnya sendiri.

3. Agnes masih satu-satunya artis Indonesia yang pernah menjadi presenter dan berkesempatan menyanyi di Red Carpet American Music Awards pada 2010 lalu.

4. Ketika berada di Amerika, Agnes sempat kelimpungan mencari sambel pedas. Ia jadi gelisah dan lemah, dan akibatnya ia pun rela menempuh perjalan jauh untuk mencarinya. Hingga akhirnya ia menemukan sambel yang lumayan pedas di salah satu tempat di Amerika, yang membuatnya kembali segar dan penuh vitalitas.

5. Twitter @agnezmo milik Agnes adalah satu-satunya akun selebriti Indonesia yang memiliki tanda Verified Account dengan jumlah follower lebih dari 900 ribu.

6. Agnes ditunjuk sebagai Duta Anti Narkoba oleh DEA dan IDEC Far East Region. Pemilihan Agnes didasarkan atas dasar gaya hidupnya yang sehat dan prestasinya yang cukup besar. Sebagai Duta Anti Narkoba, Agnes harus sambang ke 18 negara Asia untuk mendukung kampanye anti narkoba internasional, termasuk Nepal, Korea Selatan, China, India, dan Australia.

7. Selama tahun 2004-2011 tercatat Agnes sudah meraih sekitar 30 penghargaan di bidang musik. Tahun 1999-2011 ada 11 penghargaan di bidang akting. Dan untuk penghargaan lainnya, termasuk dari berbagai media, ada 19 penghargaan mulai tahun 2002 sampai 2011.
 
 

PEMROGRAMAN LINIER

PEMROGRAMAN LINIER
(Sumber :  Siringoringo, 2005)


Pemrograman Linier disingkat PL merupakan metode  matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan keuntungan dan meminimumkan biaya. PL banyak diterapkan dalam masalah ekonomi, industri, militer, social dan lain-lain. PL berkaitan dengan penjelasan suatu kasus dalam dunia nyata sebagai suatu model matematik yang terdiri dari sebuah fungsi tujuan linier dengan beberapa kendala linier.

Karakteristik  Pemrograman Linier

Sifat linearitas suatu kasus dapat ditentukan dengan menggunakan beberapa cara. Secara statistik, kita dapat memeriksa kelinearan menggunakan grafik (diagram pencar) ataupun menggunakan uji hipotesa. Secara teknis, linearitas ditunjukkan oleh adanya sifat proporsionalitas, additivitas, divisibilitas dan kepastian  fungsi tujuan dan pembatas.

Sifat proporsional dipenuhi jika kontribusi setiap variabel pada fungsi tujuan atau penggunaan sumber daya yang membatasi proporsional terhadap level nilai variabel. Jika harga per unit produk misalnya adalah sama berapapun jumlah yang dibeli, maka sifat proporsional dipenuhi. Atau dengan kata lain, jika pembelian dalam jumlah besar mendapatkan diskon, maka sifat proporsional tidak dipenuhi. Jika penggunaan sumber daya per unitnya tergantung dari jumlah yang diproduksi, maka sifat proporsionalitas tidak dipenuhi.

Sifat additivitas mengasumsikan bahwa tidak ada bentuk perkalian silang diantara berbagai aktivitas, sehingga tidak akan ditemukan bentuk perkalian silang pada model. Sifat additivitas berlaku baik bagi fungsi tujuan maupun pembatas (kendala). Sifat additivitas dipenuhi jika fungsi tujuan merupakan penambahan langsung kontribusi masing-masing variabel keputusan. Untuk fungsi kendala, sifat additivitas dipenuhi jika nilai kanan merupakan total penggunaaan masing-masing variabel keputusan. Jika dua variabel keputusan misalnya merepresentasikan dua produk substitusi, dimana peningkatan volume penjualan salah satu produk akan mengurangi volume penjualan produk lainnya dalam pasar yang sama, maka sifat additivitas tidak terpenuhi.

Sifat divisibilitas berarti unit aktivitas dapat dibagi ke dalam sembarang level fraksional, sehingga nilai variabel keputusan non integer dimungkinkan.

Sifat kepastian menunjukkan bahwa semua parameter model berupa konstanta. Artinya koefisien fungsi tujuan maupun fungsi pembatas merupakan suatu nilai pasti, bukan merupakan nilai dengan peluang tertentu.

Keempat asumsi (sifat) ini dalam dunia nyata tidak selalu dapat dipenuhi. Untuk meyakinkan dipenuhinya keempat asumsi ini, dalam pemrograman linier diperlukan analisis sensitivitas terhadap solusi optimal yang diperoleh.

Formulasi Permasalahan

Urutan pertama dalam penyelesaian adalah mempelajari sistem relevan dan mengembangkan pernyataan permasalahan yang dipertimbangakan dengan jelas. Penggambaran sistem dalam pernyataan ini termasuk pernyataan tujuan, sumber daya yang membatasi, alternatif keputusan yang mungkin (kegiatan atau aktivitas), batasan waktu pengambilan keputusan, hubungan antara bagian yang dipelajari dan bagian lain  dalam perusahaan, dan lain-lain.

Penetapan tujuan yang tepat merupakan aspek yang sangat penting dalam formulasi masalah. Untuk membentuk tujuan optimalisasi, diperlukan identifikasi anggota manajemen yang benar-benar akan melakukan pengambilan keputusan dan mendiskusikan pemikiran mereka tentang tujuan yang ingin dicapai.

Pembentukan model matematik

Tahap berikutnya yang harus dilakukan setelah memahami permasalahan optimasi adalah membuat model yang sesuai untuk analisis. Pendekatan konvensional riset operasional untuk pemodelan adalah membangun model matematik yang menggambarkan inti permasalahan. Kasus dari bentuk cerita diterjemahkan ke model matematik. Model matematik merupakan representasi kuantitatif tujuan dan sumber daya yang membatasi sebagai fungsi variabel keputusan. Model  matematika permasalahan optimal terdiri dari dua bagian. Bagian pertama memodelkan tujuan optimasi. Model matematik tujuan selalu menggunakan bentuk persamaan. Bentuk persamaan digunakan karena kita ingin mendapatkan solusi optimum pada satu titik. Fungsi tujuan yang akan dioptimalkan hanya satu. Bukan berarti bahwa permasalahan optimasi hanya dihadapkan pada satu tujuan. Tujuan dari suatu usaha bisa lebih dari satu. Tetapi pada bagian ini kita hanya akan tertarik dengan permasalahan optimal dengan satu tujuan.

Bagian kedua merupakan model matematik yang merepresentasikan sumber daya yang membatasi. Fungsi pembatas bisa berbentuk persamaan (=) atau pertidaksamaan (≤ atau ≥). Fungsi pembatas disebut juga sebagai konstrain. Konstanta (baik sebagai koefisien maupun nilai kanan) dalam fungsi pembatas maupun pada tujuan dikatakan sebagai parameter model. Model matematika mempunyai beberapa keuntungan dibandingakan pendeskripsian permasalahan secara verbal. Salah satu keuntungan yang paling jelas adala model matematik menggambarkan permasalahan secara lebih ringkas. Hal ini cenderung membuat struktur keseluruhan permasalahan lebih mudah dipahami, dan membantu mengungkapkan relasi sebab akibat penting. Model matematik juga memfasilitasi yang berhubungan dengan permasalahan dan keseluruhannya dan mempertimbangkan semua keterhubungannya secara simultan. Terakhir, model matematik membentuk jembatan ke penggunaan teknik matematik dan komputer kemampuan tinggi untuk menganalisis permasalahan.

Di sisi lain, model matematik mempunyai kelemahan. Tidak semua karakteristik sistem dapat dengan mudah dimodelkan menggunakan fungsi matematik. Meskipun dapat dimodelkan dengan fungsi matematik, kadang-kadang penyelesaiannya sulit diperoleh karena kompleksitas fungsi dan teknik yang dibutuhkan.

Bentuk umum pemrograman linier adalah sebagai berikut :

Fungsi tujuan :
Maksimumkan atau minimumkan z = c1x1 + c2x2 + ... + cnxn

Sumber daya yang membatasi :

a11x1 + a12x2 + ... + a1nxn = /≤ / ≥ b1
a21x1 + a22x2 + … + a2nxn = /≤ / ≥ b2
am1x1 + am2x2 + … + amnxn = /≤ / ≥ bm
x1, x2, …, xn ≥ 0

Simbol x1, x2, ..., xn  (xi) menunjukkan variabel keputusan. Jumlah variabel keputusan (xi) oleh karenanya tergantung dari jumlah kegiatan atau aktivitas yang dilakukan untuk mencapai tujuan.  Simbol c1,c2,...,cn merupakan kontribusi masing-masing variabel keputusan terhadap tujuan, disebut juga koefisien fungsi tujuan pada model matematiknya.Simbol a11, ...,a1n,...,amn merupakan penggunaan per unit variabel keputusan akan sumber daya yang membatasi, atau disebut juga sebagai koefisien fungsi kendala pada model matematiknya. Simbol b1,b2,...,bm menunjukkan jumlah masing-masing sumber daya yang ada. Jumlah fungsi kendala akan tergantung dari banyaknya sumber daya yang terbatas.

Pertidaksamaan terakhir  (x1, x2, …, xn ≥ 0) menunjukkan batasan non negatif. Membuat model matematik dari suatu permasalahan bukan hanya menuntut kemampuan matematik tapi juga menuntut seni permodelan. Menggunakan seni akan membuat permodelan lebih mudah dan menarik.

Kasus pemrograman linier sangat beragam. Dalam setiap kasus, hal yang penting adalah memahami setiap kasus  dan memahami konsep permodelannya. Meskipun fungsi tujuan misalnya hanya mempunyai kemungkinan bentuk maksimisasi atau minimisasi, keputusan untuk memilih salah satunya bukan pekerjaan mudah. Tujuan pada suatu kasus bisa menjadi batasan pada kasus yang lain. Harus hati-hati dalam menentukan tujuan, koefisien fungsi tujuan, batasan dan koefisien pada fungsi pembatas.

Contoh Kasus yang diselesaikan

Pada sub bab ini terdapat 10 kasus dengan karakteristik berbeda yang sudah diselesaikan untuk memperkaya pembaca dalam ilmu dan seni permodelan. Pahami dan perhatikan teknik permodelannya dengan hati-hati.

  1. Seorang pengrajin menghasilkan satu tipe meja dan satu tipe kursi. Proses yang dikerjakan hanya merakit meja dan kursi. Dibutuhkan waktu 2 jam untuk merakit 1 unit meja dan 30 menit untuk merakit 1 unit kursi. Perakitan dilakukan oleh 4 orang karyawan dengan waktu kerja 8 jam perhari. Pelanggan pada umumnya membeli paling banyak 4 kursi untuk 1 meja. Oleh karena itu pengrajin harus memproduksi kursi paling banyak empat kali jumlah meja. Harga jual per unit meja adalah Rp 1,2 juta dan per unit kursi adalah Rp 500 ribu.

Formulasikan kasus tersebut ke dalam model matematiknya !

Solusi :

Hal pertama yang harus dilakukan adalah mengidentifikasi tujuan, alternatif keputusan dan sumber daya yang membatasi. Berdasarkan informasi yang diberikan pada soal, tujuan yang ingin dicapai adalah memaksimumkan pendapatan. Alternatif keputusan adalah jumlah meja dan kursi yang akan diproduksi. Sumber daya yang membatasi  adalah waktu kerja karyawan dan perbandingan jumlah kursi dan meja yang harus diproduksi (pangsa pasar ).

Langkah berikutnya adalah memeriksa sifat proporsionalitas, additivitas, divisibilitas dan kepastian. Informasi di atas tidak menunjukkan adanya pemberian diskon, sehingga harga jual per meja maupun kursi akan sama meskipun jumlah yang dibeli semakin banyak. Hal ini mengisyaratkan bahwa total  pendapatan yang diperoleh pengrajin proposional terhadap jumlah produk yang terjual. Penggunaan sumber daya yang membatasi , dalam hal ini waktu kerja karyawan dan pangsa pasar juga proporsional terhadap jumlah meja dan kursi yang diproduksi. Dengan  demikian dapat dinyatakan sifat proporsionalitas dipenuhi. Total pendapatan pengrajin merupakan jumlah pendapatan dari keseluruhan meja dan kursi yang terjual. Penggunaan sumber daya ( waktu kerja karyawan dan pangsa pasar) merupakan penjumlahan waktu yang digunakan untuk memproduksi meja dan kursi. Maka dapat dinyatakan juga sifat additivitas dipenuhi. Sifat divisibilitas dan kepastian juga dipenuhi.

Ada dua variabel keputusan dan dua sumber daya yang membatasi. Fungsi tujuan meru[pakan maksimisasi, karena semakin besar pendapatan akan semakin disukai oleh pengrajin. Fungsi kendala pertama (batasan waktu) menggunakan pertidaksamaan ≤, karena waktu yang tersedia dapat digunakan sepenuhnya atau tidak, tapi tidak mungkin melebihi waktu yang ada. Fungsi kendala yang kedua bisa menggunakan ≤ atau ≥ tergantung dari pendefinisianvariabelnya.
Kita definisikan :
x1 = jumlah meja yang akan diproduksi
x2 = jumlah kursi yang akan diproduksi

Model umum Pemrograman Linier kasus di atas adalah :

Fungsi tujuan :
Maksimumkan z = 1.2 x1 + 0.5 x2

Kendala :
2x1 + 0.5 x2 ≤ 32
x1/x2 ≥ ¼ atau 4x1≥ x2 atau 4x1 – x2 ≥ 0
x1 , x2 ≥ 0


  1. Seorang peternak memiliki 200 kambing yang mengkonsumsi 90 kg pakan khusus setiap harinya. Pakan tersebut disiapkan menggunakan campuran jagung dan bungkil kedelai dengan komposisi sebagai berikut :


Bahan
Kg per kg bahan
Kalsium
Protein
Serat
Biaya (Rp/kg)
Jagung
0.001
0.09
0.02
2000
Bungkil kedelai
0.002
0.60
0.06
5500


Kebutuhan pakan kambing setiap harinya adalah paling banyak 1% kalsium, paling sedikit 30% protein dan paling banyak 5% serat.
Formulasikan permasalahan di atas kedalam model matematiknya !

Solusi :

Hal pertama yang harus dilakukan adalah mengidentifikasi tujuan , alternative keputusan dan sumber daya yang membatasi. Berdasarkan informasi yang diberikan pada soal, tujuan yang ingin dicapai adalah meminimumkan biaya pembelian bahan pakan. Alternative keputusan adalah jumlah jagung dan bungkil kedelai yang akan digunakan. Sumber daya yang membatasi adalah kandungan kalsium, protein dan serat pada  jagung dan bungkil kedelai, serta kebutuhan jumlah pakan per hari.

Langkah berikutnya adalah memeriksa sifat proporsionalitas, additivitas, divisibilitas dan kepastian. Informasi di atas tidak menunjukkan adanya pemberian diskon, sehingga harga pembelian jagung dan bungkil kedelai per kg tidak berbeda meskipun pembelian dalam jumlah besar. Hal ini mengisyaratkan bahwa total biaya yang harus dikeluarkan peternak proporsional  terhadap jumlah jagung dan  bungkil kedelai yang dibeli. Penggunaan sumber daya yang membatasi, dalam hal ini komposisi jagung dan bungkil kedelai akan serat, protein dan kalsium proporsional terhadap jumlah jagung dan bungkil. Dengan  demikian dapat dinyatakan  sifat proporsionalitas  dipenuhi. Total pengeluaran pembelian bahan pakan  merupakan penjumlahan  pengeluaran untuk jagung dan bungkil kedelai. Jumlah  masing-masing serat, protein dan kalsium yang ada di pakan  khusus merupakan penjumlah serat, protein dan kalsium yang ada pada jagung dan bungkil kedelai. Jumlah pakan khusus yang dihasilkan merupakan penjumlahan jagung dan bungkil kedelai yang digunakan.  Dengan demikian sifat additivitas dipenuhi. Sifat divisibilitas dan kepastian juga dipenuhi.
Ada dua variabel keputusan dan empat sumber daya yang membatasi. Fungsi tujuan merupakan minimisasi, karena semakin kecil biaya akan semakin disukai oleh peternak. Fungsi kendala pertama (batasan jumlah pakan yang dibutuhkan per hari) menggunakan persamaan (=), fungsi kendala kedua (kebutuhan kalsium) dan kendala keempat (kebutuhan serat) menggunakan pertidaksamaan ≤, dan fungsi kendala ketiga (kebutuhan akan protein) menggunakan pertidaksamaan ≥.
Kita definisikan :
x1 = jumlah jagung yang akan digunakan
x2 = jumlah bungkil kedelai yang akan digunakan

Model umum Pemrograman linier kasus di atas oleh karenanya adalah :

Fungsi tujuan : minimumkan z = 2000 x1 + 5500 x2
Kendala :
x1 + x2 = 90
0.001 x1 + 0.002 x2 ≤ 0.9
0.09 x1 + 0.6 x2 ≥ 27
0.02 x1 + 0.06 x2 ≤ 4.5
x1, x2 ≥ 0



3.    Suatu bank kecil mengalokasikan dana maksimum Rp 180 juta untuk pinjaman pribadi dan pembelian mobil satu bulan kedepan. Bank mengenakan biaya suku bunga per tahun 14% untuk pinjaman pribadi dan 12% untuk pinjaman pembelian mobil. Kedua tipe pinjaman itu dikembalikan bersama dengan bunganya satu tahun kemudian. Jumlah pinjaman pembelian mobil paling tidak dua kali lipat dibandingkan pinjaman pribadi. Pengalaman sebelumnya menunjukkan bahwa 1% pinjaman pribadi merupakan kredit macet.
            Formulasikan masalah di atas kedalam   bentuk model matematiknya !

Solusi :
 Hal pertama yang harus dilakukan adalah mengidentifikasi tujuan, alternatif keputusan dan sumber daya yang membatasi. Berdasarkan informasi yang diberikan pada soal, tujuan yang ingin dicapai adalah memaksimumkan pendapatan bunga dan pengembalian pinjaman. Alternatif keputusan adalah jumlah alokasi pinjaman pribadi dan pinjaman mobil. Sumber daya yang membatasi adalah jumlah alokasi anggaran untuk kredit bulan depan dan perbandingan antara jumlah kredit pribadi dan pembelian mobil.

Sifat proporsionalitas, additivitas, divisibilitas dan kepastian dipenuhi.

Ada dua variabel keputusan yaitu jumlah anggaran untuk pinjaman pribadi dan pinjaman pembelian mobil, dan dua sumber daya yang membatasi. Fungsi tujuan merupakan maksimisasi , karena semakin besar pendapatan akan semakin disukai oleh manajemen bank.
Kita definisikan :
x1 = jumlah anggaran untuk pinjaman pribadi
x2 = jumlah anggaran untuk pinjaman pembelian mobil.

Model umum Pemrograman Linier kasus diatas adalah :

Fungsi tujuan : Maksimumkan z = (0.14 – 0.01) x1 + 0.12 x2
Kendala :
x1 + x2 ≤ 180
x2 ≥ 2x1 atau -2x1 + x2 ≥ 0
x1, x2 ≥ 0

4.    Suatu pabrik perakitan radio menghasilkan dua tipe radio, yaitu HiFi-1 dan HiFi-2 pada fasilitas perakitan yang sama. Lini perakitan terdiri dari 3 stasiun kerja. Waktu perakitan masing-masing tipe pada masing-masing stasiun kerja adalah sebagai berikut :

Stasiun kerja
Waktu perakitan per unit (menit)
HiFi-1
HiFi-2
1
6
4
2
5
5
3
4
6

      Waktu kerja masing-masing stasiun kerja adalah 8 jam per hari. Masing-masing stasiun kerja membutuhkan perawatan harian selama 10%, 14% dan 12% dari total waktu kerja (8 jam) secara berturut-turut untuk stasiun kerja 1,2 dan 3.
      Formulasikan permasalahan ini kedalam model matematiknya !

Solusi :
Alternatif keputusan adalah : radio tipe HiFi-1 (x1) dan radio tipe HiFi-2 (x2).
Tujuannya adalah memaksimumkan jumlah radio HiFi-1 dan HiFi-2 yang diproduksi.
Sumber daya pembatas adalah : jam kerja masing-masing stasiun kerja dikurangi dengan waktu yang dibutuhkan untuk perawatan.
Waktu produktif masing-masing stasiun kerja oleh karenanya adalah :
Stasiun 1 : 480 menit – 48 menit = 432 menit
Stasiun 2 : 480 menit – 67.2 menit = 412.8 menit
Stasiun 3 : 480  menit – 57.6 menit = 422.4 menit.

Model umum pemrograman linier :
Maksimumkan z = x1 + x2
Kendala :
6x1 + 4x2 ≤ 432
5x1 + 5x2 ≤ 412.8
4x1 + 6x2 ≤ 422.4
x1, x2 ≥ 0

5.      Dua produk dihasilkan menggunakan tiga mesin. Waktu masing-masing mesin yang digunakan untuk menghasilkan kedua produk dibatasi hanya 10 jam per hari. Waktu produksi dan keuntungan per unit masing-masing  produk ditunjukkan table di bawah ini :

Produk
Waktu produksi (menit)
Mesin 1
Mesin 2
Mesin 3
Mesin 4
1
10
6
8
2
2
5
20
15
3

            Formulasikan permasalahan di atas ke dalam model matematiknya !

Solusi :
Alternatif keputusan adalah : produk 1 (x1) dan produk 2 (x2).
Tujuannya adalah memaksimumkan keuntungan
Sumber daya pembatas adalah : jam kerja masing-masing mesin.

Model umum pemrograman linier :
Maksimumkan z = 2x1 + 3x2
Kendala :
10 x1 + 5 x2 ≤ 600
6 x1 + 20 x2 ≤ 600
8 x1 + 15 x2 ≤ 600
x1, x2 ≥ 0


6.      Empat produk diproses secara berurutan pada 2 mesin. Waktu pemrosesan dalam jam per unit produk pada kedua mesin ditunjukkan table di bawah ini :

Mesin
Waktu per unit (jam)
Produk 1
Produk 2
Produk 3
Produk 4
1
2
3
4
2
2
3
2
1
2

Biaya total untuk memproduksi setiap unit produk didasarkan secara langsung pada jam mesin. Asumsikan biaya operasional per jam mesin 1 dan 2 secara berturut-turut  adalah $10 dan $5. Waktu yang disediakan untuk memproduksi keempat produk pada mesin 1 adalah 500 jam dan mesin 2 adalah 380 jam. Harga jual per unit keempat produk secara berturut-turut adalah $65, $70, $55 dan $45. Formulasikan permasalahan di atas ke dalam model matematiknya !

Solusi :
Alternatif keputusan adalah : jumlah produk 1,2,3 dan 4 yang dihasilkan.
Tujuannya adalah memaksimumkan keuntungan. Perhatikan, keuntungan diperoleh dengan mengurangkan biaya dari pendapatan.
Keuntungan per unit dari produk 1 = 65 – (10x2  + 3x5) = 30
Keuntungan per unit dari produk 2 = 70 – (10x3 + 2x5) = 30
Keuntungan per unit dari produk 3 = 55 – (10x4 + 1x5) = 10
Keuntungan per unit dari produk 4 = 45 – (10x2 + 2x5) = 15

Sumber daya pembatas adalah waktu kerja yang disediakan kedua mesin.

Definisikan :
x1 : jumlah produk 1 yang dihasilkan
x2 : jumlah produk 2 yang dihasilkan
x3 : jumlah produk 3 yang dihasilkan
x4 : jumlah produk 4 yang dihasilkan

Model umum pemrograman linier :
Maksimumkan z = 30 x1 + 30x2 + 10 x3 + 15 x4
Kendala :
2x1 + 3 x2 + 4x3 + 2x4 ≤ 500
3x1 + 2 x2 + x3 + 2x4 ≤ 380
x1, x2,  x3 , x4   ≥ 0


  1. Suatu perusahaan manufaktur menghentikan produksi salah satu produk yang tidak menguntungkan. Penghentian ini menghasilkan kapasitas produksi yang menganggur (berlebih). Kelebihan kapasitas produksi ini oleh manajemen sedang dipertimbangkan untuk dialokasikan ke salah satu  atau ke semua produk yang dihasilkan (produk 1,2 dan 3). Kapasitas yang tersedia pada mesin yang mungkin akan membatasi output diringkaskan pada table berikut :

Tipe mesin
Waktu yang dibutuhkan produk pada masing-masing mesin (jam)
Waktu yang tersedia (jam per minggu)
Produk 1
Produk 2
Produk 3
Mesin milling
9
3
5
500
Lathe
5
4
0
350
Grinder
3
0
2
150

Bagian penjualan mengindikasikan bahwa penjualan potensial untuk produk 1 dan 2 tidak akan melebihi laju produksi maksimum dan penjualan potensial untuk produk 3 adalah 20 unit per minggu. Keuntungan per unit masing-masing produk secara berturut-turut adalah $50, $20 dan $25.
Formulasikan permasalahan diatas kedalam model matematik !

Solusi :
Alternatif keputusan :
Jumlah produk 1 yang dihasilkan = x1
Jumlah produk 2 yang dihasilkan = x2
Jumlah produk 3 yang dihasilkan = x3

Tujuannya adalah : memaksimumkan keuntungan
Sumber daya pembatas adalah :
Jam kerja mesin milling per minggu : 500 jam
Jam kerja mesin llathe per minggu : 350 jam
Jam kerja mesin grinder per minggu : 150 jam.

Model matematikanya adalah :
Maksimumkan z = 50 x1 + 20 x2 + 25 x3
Kendala :
9x1 + 3 x2 + 5x3 ≤ 500
5x1 + 4 x2 ≤ 350
3x1 + 2x3 ≤ 150
x3 ≤ 20
x1, x2,  x3 g  ≥ 0



------------****------------


Siringoringo, Hotniar. Seri Teknik Riset Operasional. Pemrograman Linear. Penerbit Graha Ilmu. Yogyakarta. 2005.